Linear Viscoelastic Responses: The Prony Decomposition Naturally Leads Into the Caputo-Fabrizio Fractional Operator
نویسندگان
چکیده
منابع مشابه
Fractional Descriptor Continuous-Time Linear Systems Described by the Caputo-Fabrizio Derivative
The Weierstrass–Kronecker theorem on the decomposition of the regular pencil is extended to fractional descriptor continuous-time linear systems described by the Caputo–Fabrizio derivative. A method for computing solutions of continuous-time systems is presented. Necessary and sufficient conditions for the positivity and stability of these systems are established. The discussion is illustrated ...
متن کاملReachability Of Fractional Continuous-Time Linear Systems Using The Caputo-Fabrizio Derivative
The Caputo-Fabrizio definition of the fractional derivative is applied to analysis of the positivity and reachability of continuous-time linear systems. Necessary and sufficient conditions for the reachability of standard and positive fractional continuous-time linear systems are established. INTRODUCTION A dynamical system is called positive if its trajectory starting from any nonnegative init...
متن کاملOptimality conditions for fractional variational problems with Caputo-Fabrizio fractional derivatives
*Correspondence: [email protected] Department of Mathematics, School of Science, Xi’an University of Posts and Telecommunications, Chang’an Road, Xi’an, China Abstract In this paper, we study the necessary and sufficient optimality conditions for problems of the fractional calculus of variations with a Lagrange function depending on a Caputo-Fabrizio fractional derivative. The new kernel of Capu...
متن کاملNumerical Methods for Sequential Fractional Differential Equations for Caputo Operator
To obtain the solution of nonlinear sequential fractional differential equations for Caputo operator two methods namely the Adomian decomposition method and DaftardarGejji and Jafari iterative method are applied in this paper. Finally some examples are presented to illustrate the efficiency of these methods. 2010 Mathematics Subject Classification: 65L05, 26A33
متن کاملFixed-point theorem for Caputo–Fabrizio fractional Nagumo equation with nonlinear diffusion and convection
We make use of fractional derivative, recently proposed by Caputo and Fabrizio, to modify the nonlinear Nagumo diffusion and convection equation. The proposed fractional derivative has no singular kernel considered as a filter. We examine the existence of the exact solution of the modified equation using the method of fixed-point theorem. We prove the uniqueness of the exact solution and presen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Physics
سال: 2018
ISSN: 2296-424X
DOI: 10.3389/fphy.2018.00135